Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.11.02.565304

RESUMO

In late 2023, a lineage of SARS-CoV-2 emerged and was named the BA.2.86 variant. BA.2.86 is phylogenetically distinct from other Omicron sublineages identified so far, displaying an accumulation of over 30 amino acid mutations in its spike protein. Here, we performed multiscale investigations to reveal the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Experimental studies showed that four clinically-available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 is significantly lower than that of BA.2 in both in vitro cell cultures and in vivo, it is suggested that the attenuated pathogenicity of BA.2.86 is due to its decreased replication capacity.

2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.10.19.563209

RESUMO

In middle-late 2023, a sublineage of SARS-CoV-2 Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. Here, we performed multiscale investigations to reveal virological features of newly emerging EG.5.1 variant. Our phylogenetic-epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T, are critical to the increased viral fitness. Experimental investigations addressing the growth kinetics, sensitivity to clinically available antivirals, fusogenicity and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 is comparable to that of XBB.1.5. However, the cryo-electron microscopy reveals the structural difference between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible at least in our experimental setup. Our multiscale investigations provide the knowledge for understanding of the evolution trait of newly emerging pathogenic viruses in the human population.

3.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.08.16.553332

RESUMO

Circulation of SARS-CoV-2 Omicron XBB has resulted in the emergence of XBB.1.5, a new Variant of Interest. Our phylogenetic analysis suggests that XBB.1.5 evolved from XBB.1 by acquiring the F486P spike (S) mutation, subsequent to the acquisition of a nonsense mutation in ORF8. Neutralization assays showed similar abilities of immune escape between XBB.1.5 and XBB.1. We determined the structural basis for the interaction between human ACE2 and the S protein of XBB.1.5, showing similar overall structures between the S proteins of XBB.1 and XBB.1.5. The intrinsic pathogenicity of XBB.1.5 in hamsters is lower than that of XBB.1. Importantly, we found that the ORF8 nonsense mutation of XBB.1.5 resulted in impairment of MHC expression. In vivo experiments using recombinant viruses revealed that the XBB.1.5 mutations are involved with reduced virulence of XBB.1.5. Together, these data suggest that the mutations in ORF8 and S could enhance spreading of XBB.1.5 in humans.

4.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.06.20.545832

RESUMO

Pulmonary infection with SARS-CoV-2 stimulates host immune responses and can also result in the progression of dysregulated and critical inflammation. Throughout the pandemic, the management and treatment of COVID-19 has been continuously updated with a range of antiviral drugs and immunomodulators. Monotherapy with oral antivirals has proven to be effective in the treatment of COVID-19. However, the treatment should be initiated in the early stages of infection to ensure beneficial therapeutic outcomes, and there is still room for further consideration on therapeutic strategies using antivirals. Here, we show that the oral antiviral ensitrelvir combined with the anti-inflammatory corticosteroid methylprednisolone has higher therapeutic effects and better outcomes in a delayed dosing model of SARS-CoV-2 infected hamsters compared to the monotherapy with ensitrelvir or methylprednisolone alone. Combination therapy with these drugs improved respiratory conditions and the development of pneumonia in hamsters even when the treatment was started after 2 days post infection. The combination therapy led to a differential histological and transcriptomic pattern in comparison to either of the monotherapies, with reduced lung damage and down-regulated expressions of genes involved in inflammatory response. Furthermore, we found that the combination treatment is effective in infection with both highly pathogenic delta and circulating omicron variants. Our results demonstrate the advantage of combination therapy with antiviral and corticosteroid drugs in COVID-19 treatment. Since both drugs are available as oral medications, this combination therapy could provide a clinical and potent therapeutic option for COVID-19.


Assuntos
Embolia Pulmonar , Pneumopatias , Pneumonia , Síndrome Respiratória Aguda Grave , COVID-19 , Inflamação
5.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.27.521986

RESUMO

In late 2022, the SARS-CoV-2 Omicron subvariants have highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged by recombination of two co-circulating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022 around India. In vitro experiments revealed that XBB is the most profoundly resistant variant to BA.2/5 breakthrough infection sera ever and is more fusogenic than BA.2.75. Notably, the recombination breakpoint is located in the receptor-binding domain of spike, and each region of recombined spike conferred immune evasion and augmented fusogenicity to the XBB spike. Finally, the intrinsic pathogenicity of XBB in hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provided evidence suggesting that XBB is the first documented SARS-CoV-2 variant increasing its fitness through recombination rather than single mutations.

6.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.14.520006

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes significant morbidity and mortality worldwide, seriously impacting not only human health but also the global economy. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these and many other viruses have been approved, they continue to be responsible for large-scale epidemics and global pandemics. Thus, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral nucleoside analogue that exhibited antiviral activity against SARS-CoV-2 and its variants of concern, including the Delta and Omicron variants, as well as a number of other positive-sense single-stranded RNA (ssRNA+) viruses, including DENV. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with SARS-CoV-2 or DENV in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against SARS-CoV-2 and DENV but other ssRNA+ viruses.


Assuntos
Infecções por Coronavirus , Infecções
7.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.05.519085

RESUMO

In late 2022, although the SARS-CoV-2 Omicron subvariants have highly diversified, some lineages have convergently acquired amino acid substitutions at five critical residues in the spike protein. Here, we illuminated the evolutionary rules underlying the convergent evolution of Omicron subvariants and the properties of one of the latest lineages of concern, BQ.1.1. Our phylogenetic and epidemic dynamics analyses suggest that Omicron subvariants independently increased their viral fitness by acquiring the convergent substitutions. Particularly, BQ.1.1, which harbors all five convergent substitutions, shows the highest fitness among the viruses investigated. Neutralization assays show that BQ.1.1 is more resistant to breakthrough BA.2/5 infection sera than BA.5. The BQ.1.1 spike exhibits enhanced binding affinity to human ACE2 receptor and greater fusogenicity than the BA.5 spike. However, the pathogenicity of BQ.1.1 in hamsters is comparable to or even lower than that of BA.5. Our multiscale investigations provide insights into the evolutionary trajectory of Omicron subvariants.

8.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.08.07.503115

RESUMO

SARS-CoV-2 Omicron BA.2.75 emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically different from BA.5, the currently predominant BA.2 descendant. Here, we showed that the effective reproduction number of BA.2.75 is greater than that of BA.5. While the sensitivity of BA.2.75 to vaccination- and BA.1/2 breakthrough infection-induced humoral immunity was comparable to that of BA.2, the immunogenicity of BA.2.75 was different from that of BA.2 and BA.5. Three clinically-available antiviral drugs were effective against BA.2.75. BA.2.75 spike exhibited a profound higher affinity to human ACE2 than BA.2 and BA.5 spikes. The fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were comparable to those of BA.5 but were greater than those of BA.2. Our multiscale investigations suggest that BA.2.75 acquired virological properties independently of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.


Assuntos
Adenocarcinoma Bronquioloalveolar
9.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.08.05.502758

RESUMO

Unremitting emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants imposes us to continuous control measurement. Given the rapid spread, new Omicron subvariant named BA.5 is urgently required for characterization. Here we analyzed BA.5 with the other Omicron variants BA.1, BA.2, and ancestral B.1.1 comprehensively. Although in vitro growth kinetics of BA.5 is comparable among the Omicron subvariants, BA.5 become much more fusogenic than BA.1 and BA.2. The airway-on-a-chip analysis showed that the ability of BA.5 to disrupt the respiratory epithelial and endothelial barriers is enhanced among Omicron subvariants. Furthermore, in our hamster model, in vivo replication of BA.5 is comparable with that of the other Omicrons and less than that of the ancestral B.1.1. Importantly, inflammatory response against BA.5 is strong compared with BA.1 and BA.2. Our data suggest that BA.5 is still low pathogenic compared to ancestral strain but evolved to induce enhanced inflammation when compared to prior Omicron subvariants.


Assuntos
Infecções por Coronavirus , Inflamação
10.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.05.26.493539

RESUMO

After the global spread of SARS-CoV-2 Omicron BA.2 lineage, some BA.2-related variants that acquire mutations in the L452 residue of spike protein, such as BA.2.9.1 and BA.2.13 (L452M), BA.2.12.1 (L452Q), and BA.2.11, BA.4 and BA.5 (L452R), emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these L452R/M/Q-bearing BA.2-related Omicron variants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1 and BA.2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. Furthermore, infection experiments using hamsters indicated that BA.4/5 is more pathogenic than BA.2. Altogether, our multiscale investigations suggest that the risk of L452R/M/Q-bearing BA.2-related Omicron variants, particularly BA.4 and BA.5, to global health is potentially greater than that of original BA.2.


Assuntos
Adenocarcinoma Bronquioloalveolar
11.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.02.14.480335

RESUMO

Soon after the emergence and global spread of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron lineage, BA.1 (ref1, 2), another Omicron lineage, BA.2, has initiated outcompeting BA.1. Statistical analysis shows that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralisation experiments show that the vaccine-induced humoral immunity fails to function against BA.2 like BA.1, and notably, the antigenicity of BA.2 is different from BA.1. Cell culture experiments show that BA.2 is more replicative in human nasal epithelial cells and more fusogenic than BA.1. Furthermore, infection experiments using hamsters show that BA.2 is more pathogenic than BA.1. Our multiscale investigations suggest that the risk of BA.2 for global health is potentially higher than that of BA.1.


Assuntos
Infecções por Coronavirus
12.
researchsquare; 2022.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1207670.v1

RESUMO

The emergence of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, Omicron, is the most urgent concern in the global health in December 2021. Our statistical modelling estimates that Omicron is >3.0-fold and >5.6-fold more transmissible than Delta in South Africa and the UK, respectively. Intriguingly, cell culture experiments show that Omicron is less fusogenic than Delta and ancestral SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into the two subunits, which facilitates cell-cell fusion, Omicron S is faintly cleaved. Further, in hamster model, Omicron shows decreased lung infectivity and is less pathogenic compared to Delta and ancestral SARS-CoV-2. Our data suggest that the efficacy of SARS-CoV-2 S cleavage and viral fusogenicity are closely associated with viral pathogenicity, and Omicron evolved to exhibit increased transmissibility and attenuated pathogenicity.


Assuntos
Infecções por Coronavirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA